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Handling uncertain knowledge

 p Symptom(p, Toothache)  Disease(p, Cavity)

 Not correct – toothache can be caused in many other cases

 p Symptom(p, Toothache) 

 Disease(p, Cavity) 

Disease(p, GumDisease) 

Disease(p, ImpactedWisdom)  …
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Handling uncertain knowledge

 p Disease(p, Cavity)  Symptom(p, Toothache)

 This is not correct either, since all cavities do not cause toothache
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Reasons for using probability

 Specification becomes too large

 It is too much work to list the complete set of antecedents or consequents needed to 
ensure an exception-less rule

 Theoretical ignorance

 The complete set of antecedents is not known

 Practical ignorance

 The truth of the antecedents is not known, but we still wish to reason
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Axioms of Probability

1. All prob are between 0 and 1:  0  P(A)  1

2. P(True) = 1 and P(False) = 0

3. P(A  B) = P(A) + P(B) – P(A  B)

Bayes’ Rule

P(A  B) = P(A | B) P(B)

P(A  B) = P(B | A) P(A)
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Belief Networks

A belief network is a graph with the following:

1. Nodes: Set of random variables

2. Directed links: The intuitive meaning of a link from node X to node Y is that X has a direct
influence on Y

3. Each node has a conditional probability table that quantifies the effects that the parent
have on the node.

4. The graph has no directed cycles (DAG)
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Example

 Burglar alarm at home

 Fairly reliable at detecting a burglary

 Responds at times to minor earthquakes

 Two neighbors, on hearing alarm, calls police

 John always calls when he hears the alarm, but sometimes confuses the telephone ringing
with the alarm and calls then, too.

 Mary likes loud music and sometimes misses the alarm altogether
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Belief Network Example

Alarm

Burglary Earthquake

JohnCalls MaryCalls

A P(J)

T 0.90

F 0.05

A P(M)

T 0.70

F 0.01

B E P(A)

T T 0.95

T F 0.95

F T 0.29

F F 0.001

P(B)

0.001

P(E)

0.002

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8



The joint probability distribution

 A generic entry in the joint probability distribution P(x1, …, xn) is given by:
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The joint probability distribution

 Probability of the event that the alarm has sounded but neither a 
burglary nor an earthquake has occurred, and both Mary and John call:

P(J  M  A  B  E)

= P(J | A)  P(M | A)  P(A | B  E)  P(B)  P(E)

= 0.9 X 0.7 X 0.001 X 0.999 X 0.998 

= 0.00062
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The joint probability distribution

 Computation of the probabilities of several different event combinations of 
the Burglary-Alarm belief network example:

P(B) = 0.001 

P(B’) = 1 – P(B) = 0.999

P(E) = 0.002

P(E’) = 1 – P(E) = 0.998
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The joint probability distribution

 Computation of the probabilities of several different event combinations of the 
Burglary-Alarm belief network example:

P(A) = P(AB’E’) + P(AB’E) + P(ABE’) + P(ABE)

= P(A | B’E’).P(B’E’) + P(A | B’E).P(B’E) + P(A | BE’).P(BE’) + P(A | BE).P(BE)

= 0.001 x 0.999 x 0.998 

+ 0.29 x 0.999 x 0.002

+ 0.95 x 0.001 x 0.998

+ 0.95 x 0.001 x 0.002

= 0.001 + 0.0006 + 0.0009 

= 0.0025
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The joint probability distribution

 Computation of the probabilities of several different event combinations of the 
Burglary-Alarm belief network example:

P(J) = P(JA) + P(JA’)

= P(J | A).P(A) + P(J | A’).P(A’)

= 0.9 x 0.0025 + 0.05 x (1 – 0.0025)

= 0.052125

P(AB) = P(ABE) + P(ABE’) 

= 0.95 x 0.001 x 0.002 + 0.95 x 0.001 x 0.998

= 0.00095
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The joint probability distribution
 Computation of the probabilities of several different event combinations of the Burglary-

Alarm belief network example:

P(A’B) = P(A’BE) + P(A’BE’)

= P(A’ | BE).P(BE) + P(A’ | BE’).P(BE’)

= (1 – 0.95) x 0.001 x 0.002 

+ (1 – 0.95) x 0.001 x 0.998

= 0.00005

P(AE) = P(AEB) + P(AEB’)

= 0.95 x 0.001 x 0.002 + 0.29 x 0.999 x 0.002

= 0.00058
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The joint probability distribution
 Computation of the probabilities of several different event combinations of the Burglary-

Alarm belief network example:

P(AE’) = P(AE’B) + P(AE’B’)

= 0.95 x 0.001 x 0.998 + 0.001 x 0.999 x 0.998

= 0.001945

P(A’E’) = P(A’E’B) + P(A’E’B’)

= P(A’ | BE’).P(BE’) + P(A’ | B’E’).P(B’E’)

= (1 – 0.95) x 0.001 x 0.998 + (1 – 0.001) x 0.999 x 0.998

= 0.996
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The joint probability distribution
 Computation of the probabilities of several different event combinations of the Burglary-

Alarm belief network example:

P(JB) = P(JBA) + P(JBA’)

= P(J | AB).P(AB) + P(J | A’B).P(A’B)

= P(J | A).P(AB) + P(J | A’).P(A’B)

= 0.9 x 0.00095 + 0.05 x 0.00005

= 0.00086
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The joint probability distribution
 Computation of the probabilities of several different event combinations of the Burglary-

Alarm belief network example:

P(J | B) = P(JB) / P(B) = 0.00086 / 0.001 = 0.86
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The joint probability distribution
 Computation of the probabilities of several different event combinations of the Burglary-

Alarm belief network example:

P(MB) = P(MBA) + P(MBA’)

= P(M | AB).P(AB) + P(M | A’B).P(A’B)

= P(M | A).P(AB) + P(M | A’).P(A’B)

= 0.7 x 0.00095 + 0.01 x 0.00005

= 0.00067
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The joint probability distribution
 Computation of the probabilities of several different event combinations of the Burglary-

Alarm belief network example:

P(M | B) = P(MB) / P(B) = 0.00067 / 0.001 = 0.67

P(B | J) = P(JB) / P(J) = 0.00086 / 0.052125 = 0.016

P(B | A) = P(AB) / P(A) = 0.00095 / 0.0025 = 0.38

P(B | AE) = P(ABE) / P(AE) = [ P(A | BE).P(BE) ] / P(AE)

= [ 0.95 x 0.001 x 0.002 ] / 0.00058

= 0.003
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The joint probability distribution
 Computation of the probabilities of several different event combinations of the Burglary-

Alarm belief network example:

P(AJE’) = P(J | AE’).P(AE’)

= P(J | A).P(AE’)

= 0.9 x 0.001945

= 0.00175

P(A’JE’) = P(J | A’E’).P(A’E’)

= P(J | A’).P(A’E’)

= 0.05 x 0.996

= 0.0498

P(JE’) = P(AJE’) + P(A’JE’) = 0.00175 + 0.0498 = 0.05155
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The joint probability distribution
 Computation of the probabilities of several different event combinations of the Burglary-

Alarm belief network example:

P(A | JE’)  = P(AJE’) / P(JE’) = 0.00175 / 0.05155 = 0.03
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The joint probability distribution
 Computation of the probabilities of several different event combinations of the Burglary-

Alarm belief network example:

P(BJE’) = P(BJE’A) + P(BJE’A’)

= P(J | ABE’).P(ABE’) + P(J | A’BE’).P(A’BE’)

= P(J | A).P(ABE’) + P(J | A’).P(A’BE’)

= 0.9 x 0.95 x 0.001 x 0.998 + 0.05 

x (1 – 0.95) x 0.001 x 0.998

= 0.000856

P(B | JE’)  = P(BJE’) / P(JE’) = 0.000856 / 0.05155 = 0.017
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Conditional independence

 The belief network represents conditional independence:
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Incremental Network Construction

1. Choose the set of relevant variables Xi that describe the domain

2. Choose an ordering for the variables (very important step)

3. While there are variables left:

a) Pick a variable X and add a node for it

b) Set Parents(X) to some minimal set of existing nodes such that the conditional
independence property is satisfied

c) Define the conditional probability table for X
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Conditional Independence Relations

 If every undirected path from a node in X to a node in Y is d-separated by a given set of

evidence nodes E, then X and Y are conditionally independent given E.

 A set of nodes E d-separates two sets of nodes X and Y if every undirected path from a 

node in X to a node in Y is blocked given E.
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Conditional Independence Relations

 A path is blocked given a set of nodes E if there is a node Z on the path for which one of

three conditions holds:

1. Z is in E and Z has one arrow on the path leading in and one arrow out

2. Z is in E and Z has both path arrows leading out

3. Neither Z nor any descendant of Z is in E, and both path arrows lead in to Z
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Conditional Independence in Belief Networks

Battery

Radio Ignition

Starts

Petrol

Whether there is petrol and whether the radio plays are independent given evidence about

whether the ignition takes place

Petrol and Radio are independent if it is known whether the battery works
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Conditional Independence in Belief Networks

Battery

Radio Ignition

Starts

Petrol

Petrol and Radio are independent given no evidence at all.

But they are dependent given evidence about whether the car starts.

If the car does not start, then the radio playing is increased evidence that we are out of petrol.
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Inferences using belief networks

Diagnostic inferences (from effects to causes)

 Given that JohnCalls, infer that 

P(Burglary | JohnCalls) = 0.016

Causal inferences (from causes to effects)

 Given Burglary, infer that 

P(JohnCalls | Burglary) = 0.86 and 

P(MaryCalls | Burglary) = 0.67
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Inferences using belief networks

 Intercausal inferences (between causes of a common effect)

 Given Alarm, we have 

P(Burglary | Alarm) = 0.376. 

 If we add evidence that Earthquake is true, then P(Burglary | Alarm  Earthquake) 
goes down to 0.003

Mixed inferences 

 Setting the effect JohnCalls to true and the cause Earthquake to false gives 

P(Alarm | JohnCalls   Earthquake) = 0.003
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The four patterns

Q

E

Diagnostic

E

Q

Causal

Q E

InterCausal

E

Q

E

Mixed
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Answering queries

We consider cases where the belief network is a poly-tree

 There is at most one undirected path between any two nodes
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Answering queries

X

U1 Um

Y1

Z1j
Znj

Yn



XE



XE
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Answering queries

 U = U1 … Um are parents of node X

 Y = Y1 … Yn are children of node X

 X is the query variable

 E is a set of evidence variables

 The aim is to compute P(X | E)
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Definitions

 EX
+ is the causal support for X

 The evidence variables “above” X that are connected to X through its parents

 EX
– is the evidential support for X

 The evidence variables “below” X that are connected to X through its children

 EUi \ X refers to all the evidence connected to node Ui except via the path from X

 EYi \ X
+ refers to all the evidence connected to node Yi through its parents for X
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The computation of P(X|E)
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 Since X d-separates EX
+ from EX

–
, we can use conditional independence to simplify

the first term in the numerator

 We can treat the denominator as a constant

)|()|( )|(  XX EXPXEPEXP 
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The computation of P(X | EX
+)

We consider all possible configurations of the parents of X and how likely they are given EX
+.

Let U be the vector of parents U1, …, Um, and let u be an assignment of values to them.

)|( ),|()|(
u

  XXX EuPEuXPEXP
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The computation of P(X | EX
+)

)|( ),|()|(
u

  XXX EuPEuXPEXP

U d-separates X from EX
+, so the first term simplifies to P(X | u)

We can simplify the second term by noting

– EX
+ d-separates each Ui from the others,

– the probability of a conjunction of independent variables is equal to the product of their

individual probabilities
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The computation of P(X | EX
+)

The last term can be simplified by partitioning EX
+ into EU1\X, …, EUm\X and noting that

EUi\X d-separates Ui from all the other evidence in EX
+

)|( )|()|(
u



 Xi

i

X EuPuXPEXP

)|( )|()|( \

u

XUii

i

X EuPuXPEXP 

• P(X | u) is a lookup in the conditional probability table of X

• P(ui | EUi\X) is a recursive (smaller) sub-problem
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The computation of P(EX
–
| X)

Let Zi be the parents of Yi other than X, and let zi be an assignment of values to the parents

– The evidence in each Yi box is conditionally independent of the others given X

)|()|( \ XEPXEP XYi

i

X 
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The computation of P(EX
–
| X)

)|()|( \ XEPXEP XYi

i

X 


Averaging over Yi and zi yields:
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The computation of P(EX
–
| X)
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Breaking EYi\X into the two independent components EYi
–

and EYi\X
+
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The computation of P(EX
–
| X)

EYi
–

is independent of X and zi given yi, and EYi\X
+ is independent of X and yi
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The computation of P(EX
–
| X)

Apply Bayes’ rule to P(EYi\X
+ | zi):
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The computation of P(EX
–
| X)
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 Rewriting the conjunction of Yi and zi:
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The computation of P(EX
–
| X)

P(zi | X) = P(zi) because Z and X are d-separated.  Also P(EYi\X
+) is a constant
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The computation of P(EX
–
| X)

 The parents of Yi (the Zij) are independent of each other.

 We also combine the i into one single 
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The computation of P(EX
–
| X)

 P(EYi
–

| yi) is a recursive instance of P(EX
–

| X)

 P(yi | X, zi) is a cond prob table entry for Yi

 P(zij | EZij\Yi) is a recursive sub-instance of the P(X | E) calculation
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Inference in multiply connected belief networks

• Clustering methods

 Transform the net into a probabilistically equivalent (but topologically different)
poly-tree by merging offending nodes

• Conditioning methods

 Instantiate variables to definite values, and then evaluate a poly-tree for each
possible instantiation
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Inference in multiply connected belief networks

Stochastic simulation methods

 Use the network to generate a large number of concrete models of the 

domain that are consistent with the network distribution.

 They give an approximation of the exact evaluation.
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Simpson’s Paradox

• Should the drug be administered, or not? 
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Default reasoning

Some conclusions are made by default unless a counter-evidence is obtained

 Non-monotonic reasoning

Points to ponder

 Whats the semantic status of default rules?

 What happens when the evidence matches the premises of two default rules with 
conflicting conclusions?

 If a belief is retracted later, how can a system keep track of which conclusions 
need to be retracted as a consequence?
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Issues in Rule-based methods for Uncertain Reasoning

Locality

 In logical reasoning systems, if we have    A  B, then we can conclude B given 

evidence A, without worrying about any other rules. In probabilistic systems, we need 

to consider all available evidence.
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Issues in Rule-based methods for Uncertain Reasoning

Detachment

 Once a logical proof is found for proposition B, we can use it regardless of how it

was derived (it can be detached from its justification). In probabilistic reasoning,

the source of the evidence is important for subsequent reasoning.
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Issues in Rule-based methods for Uncertain Reasoning

Truth functionality

 In logic, the truth of complex sentences can be computed from the truth of the
components. Probability combination does not work this way, except under
strong independence assumptions.

A famous example of a truth functional system for uncertain reasoning is the certainty
factors model, developed for the Mycin medical diagnostic program
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Dempster-Shafer Theory

 Designed to deal with the distinction between uncertainty and ignorance.

 We use a belief function Bel(X) – probability that the evidence supports the proposition

 When we do not have any evidence about X, we assign Bel(X) = 0 as well as Bel(X) = 0
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Dempster-Shafer Theory

For example, if we do not know whether a coin is fair, then:

Bel( Heads ) = Bel( Heads ) = 0

If we are given that the coin is fair with 90% certainty, then:

Bel( Heads ) = 0.9 X 0.5 = 0.45

Bel(Heads ) = 0.9 X 0.5 = 0.45

Note that we still have a gap of 0.1 that is not accounted for by the evidence
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Fuzzy Logic

 Fuzzy set theory is a means of specifying how well an object satisfies a vague description

 Truth is a value between 0 and 1

 Uncertainty stems from lack of evidence, but given the dimensions of a man 

concluding whether he is fat has no uncertainty involved

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5
8



Fuzzy Logic

 The rules for evaluating the fuzzy truth, T, of a complex sentence are

T(A  B) = min( T(A), T(B) )

T(A  B) = max( T(A), T(B) )

T(A) = 1  T(A)
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